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ABSTRACT
Choline, obtained from diet and formed by biosynthesis, is the immediate precursor of betaine. Animal studies suggest an impact of
choline on bone metabolism. We examined the associations of plasma choline and betaine with bonemineral density (BMD), the risk
of hip fractures, and possible effect‐modification by nicotine exposure. The Hordaland Health Study (1998 to 2000) included 7074
women and men (ages 46 to 49 or 71 to 74 years). In 5315, BMD was measured. The oldest (n¼ 3311) were followed for hip fractures
through 2009. Risk associations were studied by logistic and Cox regression by comparing the lowest and middle tertiles with the
highest, as well as trends across tertiles of plasma choline and betaine. In analyses adjusted for sex and age, participants in the lowest
(odds ratio [OR]¼ 2.00, 95% confidence interval [CI] 1.69–2.37) and middle (OR¼ 1.39, CI 1.17–1.66) tertiles of plasma choline had an
increased risk of low BMD (lowest quintile) (p trend< 0.001). Separate analyses for sex and age groups revealed the strongest relations
in elderly women (lowest tertile: OR¼ 2.84, CI 1.95–4.14; middle tertile: OR¼ 1.80, CI 1.22–2.67, p trend< 0.001), and highest OR
among those in the lowest tertile who were exposed to nicotine (OR¼ 4.56, CI 1.87–11.11). Low plasma choline was also associated
with an increased risk of hip fracture in elderly women and men (lowest tertile: hazard ratio [HR]¼ 1.45, CI 1.08–1.94; middle tertile:
HR¼ 1.13, CI 0.83–1.54, p trend¼ 0.012). In elderly women, the HR for hip fracture was 1.90 (CI 1.32–2.73) and 1.36 (CI 0.92–1.99)
(p trend< 0.001) for lowest andmiddle tertiles of choline, and the highest HR was found among women in the lowest tertile exposed
to nicotine (HR¼ 2.68, CI 1.16–6.19). Plasma betaine was not related to BMD or hip fracture. Low plasma choline was associated with
low BMD in both sexes and increased the risk of hip fracture in elderly women. These results should motivate further studies on
choline, nicotine exposure, and bone metabolism. © 2014 American Society for Bone and Mineral Research.
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Introduction

Associations of plasma choline and betaine with bone health
in humans have not been reported. A role of choline in bone

metabolism is suggested by the findings of reduced bone
formation(1,2) and increased bone resorption(2) in rats fed a choline‐
deficient diet. Choline and betaine supplementation in humans has
been found to lower plasma homocysteine levels,(3,4) and high
homocysteine has been associated with low bone mineral density
(BMD) and increased risk of subsequent hip fracture.(5,6)

Choline is an essential nutrient obtained from a variety of
foods such as eggs, salmon, beef, pork, liver, soybean, and wheat
germ,(7) and is also formed by de novo biosynthesis by the

methylation of phosphatidylethanolamine.(8) Choline is impor-
tant for synthesis of acetylcholine and transport of lipoproteins,
as well as for the formation of phospholipids and blood and
membrane lipids.(8,9) Phosphatidylcholine (PC) is a phospholipid
that incorporates choline as a head group and is the most
abundant choline form, accounting for 95%of the total choline in
mammalian tissue.(10) In the mitochondria, choline is oxidized to
betaine, which serves as an osmolyte and a methyl donor in the
betaine‐homocysteine methyltransferase reaction.(8,9) Plasma PC
concentrations of polyunsaturated fatty acids have been
positively associated with BMD in men and with a decreased
risk of hip fracture in both genders.(11) Further, fatty acids may be
related to skeletal health via the production of eicosanoids and
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cytokines in bone modeling and remodeling,(12) through
peroxisomeproliferator‐activated receptors (PPARs) activation,(13)

by the production of lipid mediators reducing inflammation,(14)

and by improved osteoblast function(15) and calcium transport.(16)

The association of smoking with low BMD and increased
fracture risk is well established.(17) The underlying mechanisms
for these associations are not fully explored, but smoking has
adverse effects on skeletal remodeling and bone cells(18) and
negative influence on sex hormones among both women and
men.(19–21) In addition, increased fat oxidation,(22) reduced levels
of antioxidant vitamins, and increased oxidative stress and
inflammation(23) are observed in smokers. Further, plasma
choline has been shown to be lower in smokers than in
nonsmokers,(24) and smoking is known to alter the structure and
cause fragmentation of phospholipids,(25) thereby decreasing
the content of overall availability of PC. Given that smoking
interferes with choline metabolism and availability and itself
is a major risk factor for osteoporosis, there may be an effect
modification by smoking on choline and the risk of osteoporosis.
We hypothesized that low levels of plasma choline are

associated with low BMD and increased risk of hip fracture. We
also included plasma betaine because choline is the only
precursor of betaine and betaine gives a clue as to whether the
effects of choline are linked to one‐carbon metabolism or to
phospholipids. Thus, the aim of this community‐based study was
to examine associations of plasma choline and betaine with BMD
and subsequent risk of hip fractures, as well as to evaluate a
potential effect modification by nicotine exposure (plasma
cotinine) in these associations.

Materials and Methods

Study population

The study subjects were participants in the Hordaland Health
Study (HUSK) in Western Norway, where the baseline examina-
tion was conducted from 1998 to 2000. HUSK was conducted in
collaboration between the University of Bergen, the Norwegian
Institute of Public Health, and local health services. A total of
9187 subjects born in 1925 to 1927 and 1950 to 1951 who had
previously participated in the Hordaland Homocysteine Study in
1992 to 1993(26) were invited, and 7074 (77.0%) participated.
Of the 7074 participants, 5408 (76.4%) persons met for

densitometry measurements at Haukeland University Hospital in
Bergen.(5) Of these, 30 subjects were excluded because of invalid
BMD scans or bilateral hip prostheses. Further, plasma choline
and cotinine measurements were missing in 63 participants.
Thus, 5315 participants (1866 women and 1228 men aged 46 to
49 years and 1204 women and 1017 men aged 71 to 74 years)
comprise the BMD subpopulation of HUSK.
All 7074 participants in HUSK were followed until the first

hip fracture, and observations were censored at death or on
December 31, 2009. Because only 13 participants in the middle‐
aged cohort suffered a hip fracture during follow‐up, only the
older cohort, 1868 women and 1473 men aged 71 to 74 years at
baseline, is included in the hip fracture analyses. Plasma choline
and cotinine measurements were missing in 30 subjects. Thus, a
cohort of 1856 women and 1455 men were included in the hip
fracture analyses. During the follow‐up period, 337 women and
474 men died without having suffered a hip fracture.
The study was approved by the Regional Committee for

Medical and Health Research Ethics review. Each participant
signed an informed consent form.

Baseline data collection

Bone densitometry

BMD was measured by dual‐energy X‐ray absorptiometry (DXA)
on a stationary fan beam densitometer (Expert‐XL; Lunar
Company Inc., Madison, WI, USA). All examinations were
conducted by one of four trained technicians. The left hip was
scanned unless there was a history of hip prosthesis or fracture.
Femoral neck BMD was used in the analyses. Daily scanning of
the manufacturer‐supplied spine phantom presented no
instrumentation drift and a coefficient of variation of less than
0.9% during the entire study period.

Analytic procedures

Blood samples were collected into evacuated tubes containing
EDTA, chilled, and centrifuged within 1 to 3 hours. EDTA‐plasma
was stored at –80°C. Plasma choline, betaine, creatinine,
homocysteine, and cotinine concentrations were measured by
liquid chromatography‐tandemmass spectrometry.(27,28) Plasma
cotinine was categorized as <85 and �85 nmol/L to define
participants with no versus any nicotine exposure, respective-
ly.(29) Cotinine is the main metabolite of nicotine and a sensitive
marker of recent active and passive tobacco exposure with a half‐
life of 11 to 37 hours.(30) Plasma folate was measured by a
Lactobacillus casei microbiological assay.(31) Levels of high
sensitive C‐reactive protein (CRP) were determined by a novel
immunoassay based on matrix‐assisted laser desorption/ioniza-
tion time‐of‐flight mass spectrometry (MALDI‐TOF MS). All
analyses were done at the laboratory Bevital A/S, Bergen,
Norway (www.bevital.no).(27)

Other measures

Height and weight were measured with light clothing, and
body mass index (BMI) was calculated as weight in kilograms
divided by the square of height in meters. Self‐administered
questionnaires included information on health factors such as
physical activity, smoking, hormone‐replacement therapy,
and time (hours) since last meal. Physical activity was categorized
as no or light regular activity (<1 hour/week), regular (1 to 2
hours/week), or hard regular activity (�3 hours/week). Smoking
was categorized as current, former, and never smoking,
and former smoking was included in some of the analyses.
Use of estrogen supplements was categorized as current or no
use.

Follow‐up data collection

Hip fractures

Information on hip fracture was attained from computerized
records containing discharge diagnoses for all hospitalizations
occurring between the baseline examination in HUSK through
December 31, 2009, at the six hospitals in Hordaland County. Hip
fracture was defined as the first fracture of the proximal femur
occurring during the observation period. Only hip fractures
confirmed by a concurrent code of an adequate surgical
procedure were included in order to validate the fracture
registration; all hospital discharges with an identified hip fracture
diagnosis were searched for adequate surgical treatment.
Further descriptions of the classification codes were previously
described.(6) Information on time of death was obtained from the
Norwegian Population Register.
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Statistical analyses

Categorical variables are expressed as numbers and percentages
and continuous variables asmeanswith standard deviations, and
median with interquartile range. Independent sample t tests
were used for continuous variables and Fisher’s exact tests for
categorical variables for comparisons between participants with
no versus any nicotine exposure.

Lowest quintiles of BMD (g/cm2) and tertiles of plasma choline
(mmol/L) were established for each sex and age group. Odds
ratios (ORs) for being in the lowest quintile of femoral neck BMD
according to sex‐ and age‐specific tertiles of plasma choline were
estimated in unadjusted and adjusted logistic regression
analyses. The sex‐ and age‐specific tertiles of plasma choline
were also used in analyses including the whole population. To
explore the effect of smoking, similar analyses stratified on
nicotine exposure and self‐reported former smoking was
performed. Adjustment variables included sex, age group, BMI,
and nicotine exposure in analyses for the whole cohort, and BMI
and nicotine exposure in sex‐ and age group‐stratified analyses.
In models stratified on nicotine exposure, we adjusted for BMI,
sex, and age groupwhen investigating all participants combined,
and in analyses additionally stratified on sex and age group, we
adjusted for BMI. In addition, we adjusted for plasma folate,
creatinine, homocysteine, CRP, time since last meal, physical
activity, and use of estrogen supplementation (women only).
Similar analyses as described above were conducted for plasma
betaine.

Further, we used multiple linear regression analyses with BMD
as dependent variable and plasma choline as independent
variable with and without adjustment. However, the results were
similar to those found using logistic regression analyses; thus,
only data from the logistic regression models are presented.

Cox proportional hazards regression models were used to
estimate associations of plasma choline and betaine with
subsequent hip fractures in the oldest subjects. These analyses
were performed without and with adjustments (same variables
as for the BMD analyses except from age group), and also
stratified according to nicotine exposure and self‐reported
former smoking. Similar analyses as described above were
performed for plasma betaine.

Further, we constructed Kaplan‐Meier disease‐free survival
curves for hip fractures according to tertiles of plasma choline.

Two‐tailed p values< 0.05 were considered statistically
significant. The analyses were done using SPSS for Windows
(IBM SPSS Statistics 19, Chicago, IL, USA).

Results

Study population

Characteristics of the HUSK BMD subpopulation, stratified by sex,
age group, and nicotine exposure, are presented in Table 1.
Plasma choline and femoral neck BMD were lower among
participants with any versus no nicotine exposure within each
sex and age group. BMD was higher and choline lower in the
youngest comparedwith the oldest groups. In the older cohort in
both genders, plasma betaine was lower among nicotine‐
exposed versus unexposed participants. Plasma folate and
creatinine were lower among those exposed to nicotine in all
groups, except for plasma folate in elderly women and plasma
creatinine in elderly men. Plasma CRP was higher among
participants exposed to nicotine in all groups, apart from in

elderly women. In the majority of sex and age groups,
participants exposed to nicotine had lower BMI and were less
physically active than unexposed participants.

Two hundred fifty (13.4%) of themiddle‐aged women and 239
(19.5%) of middle‐aged men were former smokers. The
corresponding numbers for elderly women and men were 229
(19%) and 525 (51.6%), respectively.

During a median follow‐up time of 10.8 years for elderly
women and men, hip fracture was recorded among 191 women
(144 in nicotine unexposed) and 86 men (62 in nicotine
unexposed) (Supplemental Table S1). Similar characteristics as
for the HUSK BMD subpopulation were found for the HUSK
participants included in the hip fracture analyses (Supplemental
Table S1).

Plasma choline and bone mineral density

The risk of having low BMD, defined as being in the lowest
quintile of BMD, was analyzed in a logistic regression model. For
the whole population combined, participants in the lowest
(OR¼ 2.00, 95% confidence interval [CI] 1.69–2.37) and middle
(OR¼ 1.39, CI 1.17–1.66) tertiles of plasma choline compared
with the highest had an increased risk of low BMD after
adjustment for sex and age group (p trend< 0.001). This
difference between tertiles was still significant after additional
adjustment for BMI and nicotine exposure. Similar results were
found in analyses stratified on sex and age group (Table 2).

Further, inmodels stratified by nicotine exposure for thewhole
cohort, participants who were exposed to nicotine and were in
the lowest (OR¼ 2.55, CI 1.89–3.44) and middle tertiles (OR
¼ 1.66, CI 1.21–2.81) of plasma choline compared with the
highest had an increased risk of low BMD in analyses adjusted for
sex and age group (p trend< 0.001). However, a significant
association was also found among participants who were
unexposed to nicotine (lowest tertile: OR¼ 1.63, CI 1.32–2.01;
middle tertile: OR¼ 1.26, CI 1.02–1.56, p trend< 0.001). The
results were similar after further adjustment for BMI. In analyses
stratified on sex, age group, and nicotine exposure, an increased
risk of low BMD was found in all groups of participants exposed
to nicotine as well as among unexposedmiddle‐aged and elderly
women (Table 2).

In analyses for all participants combined, additional stratifica-
tion on self‐reported former smoking showed significant
increased risk of low BMD among former smokers with low
plasma choline after adjustment for sex and age group (lowest
tertile: OR¼ 1.82, CI 1.27–2.60; middle tertile: OR¼ 1.40, CI 0.98–
2.01, p trend¼ 0.001). In analyses further stratified on sex and
age group, similar findings were observed for middle‐aged and
elderly women; however, the results were not significant for men
(data not shown).

For all regressionmodels, further adjustment for plasma folate,
creatinine, homocysteine, CRP, time since last meal, physical
activity, and use of estrogen supplement (women only) did not
materially change the results.

No statistically significant associations between plasma
betaine and BMD were found in any of the groups (data not
shown).

Plasma choline and hip fracture

In Cox proportional hazard regression models for elderly women
and men combined, the hazard ratios (HR) for subsequent hip
fracture were, respectively, 1.45 (95% CI 1.08–1.94) and 1.13
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(0.83–1.54) (p trend¼ 0.012) for those in the lowest and middle
tertiles of plasma choline compared with the highest,
after adjustment for sex. The result was similar after further
adjusting for BMI and nicotine exposure. In corresponding
analyses stratified on sex, elderly females with low plasma
choline had an increased risk of subsequent hip fractures, in both
unadjusted (lowest tertile: HR¼ 1.90, CI 1.32–2.73; middle tertile:
HR¼ 1.36, CI 0.92–1.99, p trend¼ 0.001) and adjusted models
(Table 3). No significant differences in risk of hip fracture
according to plasma choline tertiles were observed among
elderly men (Table 3).
Disease‐free survival curves for hip fractures according to

tertiles of plasma choline for elderly females are shown in Fig. 1,
with the highest incidence of hip fracture in the lowest tertile,
and a significant trend across tertiles.
Further, in models stratified on nicotine exposure for

elderly women and men combined, no significant increased
risk of hip fracture was observed (data not shown). However,
when we stratified on nicotine exposure and sex, both
elderly women who were exposed (lowest tertile: HR¼ 2.68, CI
1.16–6.19; middle tertile: HR¼ 1.56, CI 0.64–3.83, p trend¼ 0.012)
and unexposed to nicotine (lowest tertile: HR¼ 1.66, CI 1.10–
2.50; middle tertile: HR¼ 1.28, CI 0.84–1.97, p trend¼ 0.015) had
an increased hip fracture risk in unadjusted and adjusted
analyses (Table 3). For elderly men, no significant association
between plasma choline and risk of hip fracture was found
(Table 3).
In analyses additionally stratified on former smoking, no

significant increased risk of hip fracture was found in former
smokers according to plasma choline in any of the groups (data
not shown).
Further adjustments for plasma folate, creatinine, homocyste-

ine, CRP, time since last meal, physical activity, and use of
estrogen supplements (in women) did not materially change the
results.
The results presented abovewere similar when plasma choline

was used as a continuous variable in Cox proportional hazard
regression analyses.
There were no significant associations between plasma

betaine and risk of hip fracture (data not shown).

Discussion

In this large community‐based study, we have shown that low
plasma choline is associated with low BMD in both women and
men and increased risk of hip fracture in older women. The
strongest association was seen among older female participants.
No significant relations were found between plasma betaine and
BMD or risk of hip fracture.

Table 3. Risk (Hazard Ratio) of Hip Fracture During Follow‐Upa According to Tertilesb of Plasma Choline by Sex and Nicotine Exposurec in
Participants Aged 71 to 74 Years at Inclusion in the Hordaland Health Study

Tertiles of plasma
choline (mmol/L)

Alld No nicotine exposuree Any nicotine exposuree

n/events HR (95% CI) p trend Events HR (95% CI) p trend Events HR (95% CI) p trend

Women 1856/191 0.003 0.040 0.020
�8.85 619/83 1.72 (1.19–2.49) 58 1.54 (1.02–2.33) 25 2.57 (1.11–5.97)
8.86–10.50 620/64 1.37 (0.93–2.01) 49 1.25 (0.82–1.92) 15 1.69 (0.69–4.14)
>10.50 617/44 1 (ref.) 37 1 (ref.) 7 1 (ref.)

Men 1455/86 0.328 0.633 0.290
�9.84 487/27 0.77 (0.46–1.30) 20 0.87 (0.48–1.59) 7 0.59 (0.21–1.64)
9.85–11.80 482/28 0.81 (0.48–1.35) 19 0.72 (0.39–1.32) 9 1.19 (0.46–3.10)
>11.80 486/31 1 (ref.) 23 1 (ref.) 8 1 (ref.)

Events ¼ hip fractures; HR ¼ hazard ratio; CI ¼ confidence interval.
aMedian 10.8 years follow‐up time.
bAge‐ and sex‐specific tertiles of plasma choline.
cNo nicotine exposure ¼ plasma cotinine <85 nmol/L; any nicotine exposure ¼ plasma cotinine �85 nmol/L.
dAdjusted for body mass index (BMI, kg/m2) and nicotine exposure.
eAdjusted for BMI.

Fig. 1. Kaplan‐Meier disease‐free survival curves for hip fractures in 1856
women (ages 71 to 74 years at inclusion), according to tertiles of plasma
choline. The p value for trend is across tertiles. Results are from the
Hordaland Health Study.
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Strengths of this study include the community‐based cohort
design, the large number of participants, andmore than 10 years
follow‐up for hip fractures. All BMD measurements were
performed on the same DXA machine. To estimate nicotine
exposure, we used plasma cotinine, which has been reported to
correlate better with various effects of smoking than self‐
reported smoking.(32) However, blood samples and other
measures were collected only at baseline. Thus, we have no
information on potential changes in plasma choline, betaine,
cotinine, or BMI during follow‐up.

Studies of health‐related effects of choline in community‐
dwelling participants are few, and we are not aware of published
studies on plasma choline in relation to human bone health. In
rats, a choline‐deficient diet has been shown to alter mandibular
bone remodeling by a reduction in osteogenesis.(1) In another
study on rats, a diet low in methionine and choline led to fat
accumulation in the liver, decreased bone formation, and
increased bone resorption, resulting in lower cancellous and
cortical bonemass compared with controls.(2) In healthy humans
with diets low in choline, fatty liver and liver or muscle damage
have been observed.(33,34)

The required daily intake of choline is somewhat lower for
women (425mg/d) than for men (550mg/d).(35) This could partly
be explained by increased endogenous de novo synthesis of PC
catalyzed by the estrogen‐dependent phosphatidylethanol-
amine N‐methyltransferase (PEMT).(36,37) The 2005 National
Health and Nutrition Examination Survey indicates that only
2% of postmenopausal women consumed the recommended
intake of choline.(38) Thus, estrogen deficiency in postmeno-
pausal womenmay promote osteoporosis as well as low choline.

Low plasma choline levels may reflect low dietary intake of
choline or perhaps be a marker of a generally poor diet or
represent changes in energy metabolism. In a previous study of
the same study population,(39) egg consumption was the only
dietary item that was significantly positively related to plasma
choline. We have also shown that high levels of plasma choline
and low levels of plasma betaine were associated with
components of the metabolic syndrome,(24) which also may
indicate insulin resistance(40,41) and mitochondrial dysfunc-
tion.(42) Our present results propose the opposite with regard
to osteoporosis. However, further studies are needed to
determine what the most important determinants of plasma
choline are.

PC availability may increase the proliferation of osteoblast
progenitors.(43) In addition, PC is a ligand for PPARs alpha (a) and
gamma (g),(44,45) which play central roles in the lipid and
carbohydrate metabolism.(46) Rat studies have demonstrated
that PPARa activation seems to play a protective role in the
regulation of bone metabolism,(47) whereas PPARg gene poly-
morphisms have been associated with bone loss and osteopo-
rosis.(47,48) Stimulation of PPARg may also cause mesenchymal
stem cells to differentiate into adipocytes instead of osteo-
blasts.(49,50) Hence, activation of PPARs may represent a link
between low choline and low BMD.

We have previously reported that high levels of homocysteine
are associated with low BMD and increased risk of hip fracture in
the current study population.(5,6) Supplementation with choline
has been shown to lower plasma homocysteine levels,(4) and
there is an inverse relation between plasma levels of homocys-
teine and choline.(24) Thus, there may be a link between the
effects of choline and homocysteine on bone health; however,
future studies are needed to investigate if these markers are
causal mediators of pathogenic effects on bone metabolism.

Low intakes of choline and betaine have been related to
increased concentrations of the inflammatory markers CRP,
interleukin‐6, and tumor necrosis factor‐a (TNF‐a),(51) which
are also associated with osteoporosis.(52,53) In addition, chronic
inflammatory diseases increase the risk of osteoporosis.(54)

Dietary choline has also been shown to inhibit macrophages,
possibly by an increased rate of PC hydrolysis.(55) Further,
inflammatory reactions can be diminished by intakes of
choline(56) and betaine(57) by increasing S‐adenosylmethio-
nine and decreasing S‐adenosylhomocysteine. The former has
been found to downregulate TNF‐a,(58) whereas the latter may
exert a stimulatory effect on release of inflammatory
cytokines.(57) Although our results were not affected by
adjusting for CRP, we cannot rule out that low‐grade
inflammation is a mediator of an adverse effect from low
choline on bone health.

We found strong associations between low plasma choline
and BMD in nicotine‐exposed participants, and these effects
were independent of BMI. Smoking is known to be associated
with oxidative stress and inflammation,(23) altered structure and
fragmentation of phospholipids and low availability of PC,(25)

increased fat oxidation,(22) low BMI,(59,60) and low levels of
estrogens.(20) The relations of nicotine exposure with inflamma-
tion (CRP) and BMI were confirmed in the present study, and low
BMI and estrogen deficiency are known risk factors of
osteoporosis.(17)

In conclusion, we found that low plasma choline was
associated with low BMD in both women and men and with
increased risk of hip fracture in elderly women. Additional studies
are needed to understand the biologic role of choline in bone
health. These results should motivate further studies on choline,
nicotine exposure, and bone metabolism, with the prospect to
create the grounds for future intervention studies.
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